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1. Additional characteristics of the equilibrium contract  

In this section I specify the characteristics of the equilibrium contract for motivating a 

supplier to test product quality in more details. As it is possible to think of a wide set of 

distribution functions that satisfy the condition that the vertical integration payoff is higher in 

state H than in state L, the distortion in the equilibrium quantity, which is a direct result of the 

sign of FL(θ) – FH(θ), may vary substantially. Moreover, as I will show below, the distortion 

is not directly related to the mean and variance of the two distributions. I will therefore offer 

some polar cases of distribution functions, and then move to characterizing the solution even 

further by making specific assumptions on the demand and cost.   

       The first and most natural polar case to think of is the case where FH(θ) dominates FL(θ) 

by FOSD: FL(θ) > FH(θ), ∀θ∈(θ0, θ1). Since V(q*(θ);θ) – c(q*(θ)) is increasing with θ, 

FOSD always satisfies the assumption EH(V(q*(θ);θ) – c(q*(θ))) > EL(V(q*(θ);θ) – c(q*(θ))). 

Applying Proposition 1 yields:  

 

 

Corollary 1: Suppose that FH(θ) dominates FL(θ) by FOSD. Then, in the interior solution to 

the buyer's problem, the equilibrium quantity is distorted downwards for ∀θ∈(θ0, θ1), and 

equals the vertical integration quantity at the two extremes of the support, θ0 and θ1. 

Moreover, the equilibrium payment to the supplier is increasing with θ  for ∀θ∈[θ0, θ1]. 

 

The case of FOSD is illustrated in Panel (a) of Figure 1. For the case of FOSD, the quantity is 

distorted downwards regardless of the average. As for the equilibrium payment to the 

supplier, FL(θ) > FH(θ) implies that T**(θ) – c(q**(θ)) is increasing with θ and since 

c(q**(θ)) is increasing with θ, Tθ**(θ) > 0. Notice that T**(θ) can therefore be negative for 
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low realizations of θ. I elaborate on the implications of this result for public policy in the next 

section.   

     The second polar scenario concerns cases where the two distribution functions cannot be 

ranked according to FOSD. This implies that there is at least one interior intersection point 

between FH(θ) and FL(θ). To generate clean and intuitive predictions concerning the quantity 

distortion in this case, I follow Diamond and Stiglitz (1974) by assuming that FH(θ) and FL(θ) 

satisfy the single-crossing condition. Applying Proposition 1 yields:      

 

Corollary 2: Suppose that there is exactly one θC∈(θ0, θ1) such that FH(θC) = FL(θC).  Then, 

in the interior solution to the buyer's problem, 

(i) if fL(θC) < fH(θC), then the equilibrium quantity is distorted downwards (upwards) 

for θ∈(θ0,θC) (θ∈(θC, θ1)); 

(ii) if fL(θC) > fH(θC), then the equilibrium quantity is distorted upwards (downwards) 

for θ∈(θ0,θC) (θ∈(θC, θ1)). 

 

The case where FH(θ) and FL(θ) satisfy the single-crossing condition is illustrated in panels 

(b) and (c) of Figure 1. Panel (b) illustrates part (i) of Corollary 2 in which FH(θ) intersects 

FL(θ) from below, such that the quantity is distorted downwards for low values of θ and 

upwards for high values of θ. In this case a government, for example, will use a new defense 

system less than is socially desirable if product testing indicated that its quality is below 

expectations and more than is socially desirable otherwise. A downstream firm such as 

supermarket or an automobile manufacturer will price the new product above the monopoly 

price (which corresponds to buying a quantity below the monopoly quantity) for low 

realizations of quality and below the monopoly price otherwise. Panel (c) illustrates part (ii) 

where FH(θ) intersects FL(θ) from above and the quantity distortion is completely reversed. 

Now the results may seem somewhat counter-intuitive as a government, for example, will 

actually use a new defense system more than is socially desirable even though product testing 

indicated that its quality is low, and less than is socially desirable otherwise. Likewise, a 

supermarket or an automobile manufacturer will price the new product above the monopoly 

price for low realizations of quality and below the monopoly price otherwise. Notice however 

that if in addition to the single-crossing property, FH(θ) dominates FL(θ) by Second Order 

Stochastic Dominance (SOSD),  then only the first scenario (part (i)) is possible.2 As for the 

payment to the supplier, here the effect of θ on T**(θ) is inconclusive because T**(θ) – 
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c(q*(θ)) is decreasing with θ whenever FL(θ) < FH(θ), while c(q*(θ)) is also increasing with 

θ.       

   The problem with the single-crossing condition, as well as with SOSD, is that these two 

features may not satisfy the assumption EH(V(q*(θ);θ) – c(q*(θ))) > EL(V(q*(θ);θ) – 

c(q*(θ))). Intuitively, SOSD ensures EH(V(q*(θ);θ) – c(q*(θ))) > EL(V(q*(θ);θ) – c(q*(θ))) 

only if V(q*(θ);θ) – c(q*(θ)) is concave in θ. However,  

 

 ( )
2

2 ( * ( ); ) –  ( * ( )) ( * ( ); ) ( * ( ); ) * ( )q
d V q c q V q V q q
d θθ θ θθ θ θ = θ θ + θ θ θ
θ

. (1) 

 

Since by assumption Vqθ(q;θ) > 0 and since qθ*(θ) > 0, (1) is positive if Vθθ(q*(θ);θ) is either 

positive or negative but small in absolute terms. This raises the question of whether the two 

cases in Corollary 2 are possible under that assumption that EH(V(q*(θ);θ) – c(q*(θ))) > 

EL(V(q*(θ);θ) – c(q*(θ))), and how these two cases are affected by the shape of the 

distribution functions and their variance and mean.     

     The answer to the above question depends on the specific shape of the two distribution 

functions and on the buyer's payoff. To show that indeed the two cases in Corollary 2 are 

feasible, and to characterize the solution even further, I turn to making more specific 

assumptions on the two distribution functions and the demand. Consider first the two 

distribution functions. Suppose that θ is distributed in state H along the unit interval 

according to some probability distribution function fH(θ) with mean µH = 1/2 and variance 

σH
2. In state L, fL(θ) is a triangle transformation of fH(θ) in that fL(θ) = fH(θ) + g(θ), where   

 

 

( 2 )( 1) , [0, ],

( )
(2 1)( 1) , [ ,1],

1

if

g
if

β − θ α−⎧ θ∈ β⎪ β⎪θ = ⎨
θ−β − α−⎪ θ∈ β⎪ −β⎩

 (2) 

and 0 < α < 2, 0 < β < 1. Figure 2 illustrates the probability and cumulative distribution 

functions given g(θ). For illustrative reasons only the figure shows the case where fH(θ) is the 

uniform distribution. The analysis below allows for any fH(θ), including those that are 

nonlinear in θ, in which case fL(θ) is also nonlinear. As the figure illustrates, the shape of the 

gap between fL(θ) and fH(θ) and between FL(θ) and FH(θ) is determined by the parameters α 

and β in the following way. The parameter α determines the gap in the weight that the two 

distributions place on the extremes of the support. If 0 < α < 1 ( 1 < α < 2), then state L 

places less (more) weight on the extremes of the support than state H, as illustrated in Panel 

(a) (Panel (b)) of Figure 2. Consequently, FL(θ) and FH(θ) satisfy the single-crossing 
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condition and if 0 < α < 1 (1 < α < 2), FL(θC) crosses FH(θC) from below (above). The 

parameter β measures the skewness of the gap between the two probability distribution 

functions. If β < ( > ) 1/2, the gap is skewed to the left (right) side of the support. Notice that 

for any FH(θ), α and β, the two cumulative distribution functions intersect exactly at θC = β. 

The two parameters α and β also determine the mean and variance in state L. Using the 

simplifying assumption that µH  = ½, I can express  µL and σL
2 only as a function of α, β and 

σH
2 for any given fH(θ) in the following way: 

 

 ( ) ( )1 12 2 2
6 362 2 (1 ) , (1 ) (1 2 ) 2 (1 ) 1 .L L Hμ = + α + β − α σ = σ + − α α − β − β − β −  (3) 

       

        Next consider the demand function. Suppose that p(q;θ) = θ – q, and c(q) = 0. Therefore, 

q*(θ) = θ/2 and V(q*(θ);θ) – c(q*(θ)) = θ2/4. I can now explicitly write the equilibrium 

quantity, parameterized by the Lagrange multiplier, λ, as:  

 

 
( )

( )

( )( 1) , [0, ],
2 2 ( ) ( 1)( 2 )

**( )
( )(1 )(1 ) , [ ,1],

2 2 ( )(1 ) (1 )(1 2 )

H

H

if
f

q

if
f

⎧ ⎡ ⎤θ β − θ θ
− λ α − θ∈ β⎪ ⎢ ⎥

β θ + λ α − β − θ⎢ ⎥⎪ ⎣ ⎦⎪θ = ⎨
⎪ ⎡ ⎤θ θ −β − θ

− λ − α θ∈ β⎪ ⎢ ⎥
θ −β + λ − α −β − θ⎢ ⎥⎪ ⎣ ⎦⎩

 (4) 

 

where the proof of Proposition 1 establishes that λ  > 0 and is increasing with C/γ(1 – γ).3 The 

first term in each line, θ/2, is the full-information quantity. The term in the squared brackets 

in each line is positive for θ∈(θ0, θ1) and equal to zero at θ = {θ0, θ1} because the second-

order condition requires that both denominators in the second terms are positive.4 Finally, I 

can use (2) and (3) to specify the conditions on α, β, σH
2 , µL and σL

2 (where recall that by 

assumption µH = 1/2) that satisfy the assumption that EH(V(q*(θ);θ) – c(q*(θ))) > 

EL(V(q*(θ);θ) – c(q*(θ))).  

     Figure 3 provides a full characterization of the example's parameters and their effect on the 

quantity distortion. Consider first the effect of α and β. The assumption that EH(V(q*(θ);θ) – 

c(q*(θ))) > EL(V(q*(θ);θ) – c(q*(θ))) allows for two possibilities. The first is the case where 0 

< α < 1 and 0 < β  < 0.618 (the lower left-hand side box in Figure 3). Intuitively, under linear 

demand the buyer is a "risk lover" in the sense that the buyer's payoff is convex in θ. 

Consequently, given that 0 < α < 1 such that state H places more weight on the extremes of 

                                                 
3 In this example q**(θ) is not differentiable at θ = β. However, ICB still holds in this case because 
q**(θ) is continuous and increasing with θ  at  θ = β as long as λ is sufficiently small.   
4 The second order condition is always satisfied if fH(θ) is sufficiently high or λ is sufficiently low.  
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the support than state L, the buyer prefers state H over state L for all β < 1/2 = µH and also for 

β > 1/2 as long as β is not too high. In this case FL(β) intersects FH(β) from below and 

therefore, consistent with part (ii) of Corollary 2, (4) reveals that the contract admits upward 

(downward) distortion in the equilibrium quantity for θ∈[0, β], (θ∈[β, 1]). The second 

possibility is the case where 1 < α < 2 and 0.618 < β < 1 (the upper right-hand side box in 

Figure 3). Now, state H places less weight on the two extremes of the support than state L and 

the buyer prefers state H over state L only if β is sufficiently high. Consistent with part (i) of 

Corollary 2, (4) reveals that the contract admits downward (upward) distortion in the 

equilibrium quantity for θ∈[0, β], (θ∈[β, 1]). In both possibilities, α and β fully characterize 

the direction of the quantity distortion. Notice that FOSD is a special case of this example, in 

which β = 0 and 0 < α < 1, or equivalently β = 1 and 1 < α < 2. Consistent with Corollary 1, 

(4) reveals that the quantity is distorted downwards for all θ∈(θ0, θ1).  

     Figure 3 also reveals that the effect of the mean and variance of the two distributions on 

the direction of the distortion is less conclusive than the effect of α and β.  Notice that I can 

write Ek(V(q*(θ);θ) – c(q*(θ))) = Ekθ2/4 = ((Ekθ)2 + Ek(θ – Ekθ)2)/4 = (µk
2+ σk

2)/4, k = {L,H}. 

It follows that with linear demand and no cost, EH(V(q*(θ);θ) – c(q*(θ))) > EL(V(q*(θ);θ) – 

c(q*(θ))) only requires that µH
2 + σH

2 > µL
2 + σL

2. Intuitively, since V(q*(θ);θ) – c(q*(θ)) is 

convex in θ, if µH = µL, the buyer prefers the state with the higher variance. Moreover, if σH
2  

= σL
2, the buyer prefers the state with the higher mean. Figure 3 reveals that if both µH > µL 

and σH
2 > σL

2, then the direction of the distortion is inconclusive, as µH > µL and σH
2 > σL

2 can 

emerge both in the lower left-hand side box where there is first upward and then downward 

distortion in the equilibrium quantity, or in the upper right-hand side box in which the 

quantity distortion is completely reversed. Intuitively, µH > µL and σH
2 > σL

2 can emerge when 

state H places higher weight on the extremes of the support than state L and the gap is skewed 

to left, or when state H places lower weight on the extremes of the support than state L and 

the gap is significantly skewed to right. If however both µH > µL and σH
2 < σL

2 then the 

quantity is distorted first downwards and then upwards (the upper right-hand side box). 

Alternatively, if both µH < µL and σH
2 > σL

2 then the quantity is distorted first upwards and 

then downwards (the lower left-hand side box). The model does not allow for the last 

possibility of both µH < µL and σH
2 < σL

2, as the assumption that state H is the preferable one 

requires that µH
2 + σH

2 > µL
2 + σL

2.  Finally, notice that the case where state L is a mean 

persevering spread of state H, µH = µL, falls on the lower left-hand side box where quantity is 

distorted first upwards and then downwards.  

     To conclude, the main point of the above analysis is that the direction of the quantity 

distortion is directly affected by the gap between FL(θ) and FH(θ). Even though I considered 

only a single-crossing between FL(θ) and FH(θ), the results can be extended to any number of 
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intersection points, θ1
C, …, θn

C that satisfy FL(θi
C) = FH(θi

C), i = {1,…,n}. In this case if fL(θi
C) 

< (>) fH(θi
C), then for θ slightly below θi

C, there is downward (upward) distortion in the 

quantity while for θ slightly above θi
C there is upward (downward) distortion in the quantity. 

Finally, the same argument can also apply for the case where instead of intersection points, 

there are intervals of θ in which FL(θ) = FH(θ).  

 

2. The robustness of Proposition 1 to more than 2 states  

This section discusses the robustness of Proposition 1 to the case of more than two states. I 

show that when the buyer is limited to offering a menu that can only discriminate among θ 

(but not among states), then along the lines of my paper, quantity distortion should be affected 

by the gap between the weighted average of all the cumulative distributions in which the 

buyer deals with the supplier, and the weighted average of all the cumulative distributions in 

which the buyer does not deal with the supplier.    

      Suppose that there are N > 2 states. In each state, k∈{1, …., N}, θ is drawn from a 

distribution function fk(θ), with a cumulative distribution function Fk(θ). Each state occurs 

with probability γk, where 0 < γk < 1 and  

1

1
N

k
k=

γ =∑ . 

        If the buyer wants to deal with the supplier in all states, then as in my paper, the buyer 

will not ask the supplier to test its new product. Suppose instead that the buyer wants to deal 

with the supplier only in "high" states. In particular, suppose that Ek(V(q*(θ);θ) – c(q*(θ))) is 

increasing with k, and that 

 

E1(V(q*(θ);θ) – c(q*(θ))) < V* < EN(V(q*(θ);θ) – c(q*(θ))). 

 

This assumption is consistent with condition (2) in my paper, and it implies that the buyer 

wants to deal with the supplier only for high states.  

     As in my model, the supplier can perform a test at a cost C, that enables the supplier to 

learn the state, k, but not θ. The buyer learns θ ex-post, if the buyer agrees to use the new 

product instead of the old one. Quality information is unverifiable.  

     Suppose that the buyer constructs a contract, (T(θ),q(θ)), that motivates the supplier to test 

the new product, and then to accept the contract only in states k ≥ kC. Notice that the buyer 

can endogenously choose kC. The buyer then sells the old product and earns V* for all states 

k∈[1, kC – 1],  and sells the new product an earns Ek(V(q(θ);θ) – c(q(θ))) otherwise. The 

buyer's problem is: 
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 ( )
1

( ( ), ( ), )
1

max * ( ( ); ) ( )
C

C
C

k N

k k k
q T k

k k k

V E V q T
−

θ θ
= =

γ + γ θ θ − θ∑ ∑ ,             

                                                        s.t. 
 

     (ICB)            ( )0 1[ , ], arg max ( ( ); ) ( )V q T
θ

∀θ∈ θ θ θ = θ θ − θ . 

( )ex post
SIC −                   Ek(T(θ) – c(q(θ))) ≤ 0,    ∀k∈{1,...,kC – 1}, 

( )ex post
SIR −                   Ek(T(θ) – c(q(θ))) ≥ 0,     ∀k∈{kC ,...,N},  

( )ex ante
SIC −   ( ) ( )

1

( ) ( ( )) ( ) ( ( ))
C

N N

k k k k
kk k

C E T c q E T c q
==

− + γ θ − θ ≥ γ θ − θ∑ ∑  , 

( )ex ante
SIR −   ( )( ) ( ( )) 0

C

N

k k
k k

C E T c q
=

− + γ θ − θ ≥∑ . 

 

     Notice that this problem is qualitatively similar to the maximization problem (5) in the 

paper. The only difference is that here there are kC – 1 ex post
SIC −  constraints, because the buyer 

needs to ensure that the supplier will not accept the contract for all realization of k < kC. 

Likewise, there are N - kC ex post
SIR −  constraints, because the buyer needs to ensure that the 

supplier will accept the contract for all realizations of k ≥ kC. As in the binary type case, the 

first-best (and full information) contract, (q(θ), T(θ)) = (q*(θ), c(q*(θ)), satisfies all the ex-

post constraints in equality, but does not satisfy the two ex-ante constraints. However, unlike 

the binary case, even if the two ex-post constraints are satisfied, they do not necessarily 

satisfy the ex-ante constraints. 

   To simplify these constraints, consider first ex ante
SIC − . Notice that:    

 

( ) ( ) ( )

( )

1 1

0 0

1

0

ˆ( ) ( ( )) ( ) ( ( )) ( ) ( ) ( ( )) ( )
ˆ

ˆˆ                                              ( ) ( ( )) ( ) ,

C C C

N N N
k

k k k k k
k k k k k k

H

E T c q T c q f d T c q f d

T c q f d

θ θ

= = =θ θ

θ

θ

⎡ ⎤ ⎡ ⎤γ⎢ ⎥⎡ ⎤γ θ − θ = γ θ − θ θ θ =γ θ − θ θ θ⎢ ⎥⎣ ⎦ γ⎢ ⎥ ⎣ ⎦⎣ ⎦

⎡ ⎤= γ θ − θ θ θ⎣ ⎦

∑ ∑ ∑∫ ∫

∫
 where 

ˆ ( ) ( )
ˆC

N
k

H k
k k

f f
=

γ
θ ≡ θ

γ∑   ,   ˆ
C

N

k
k k=

γ ≡ γ∑ . 

Then, I can define in a similar way ˆ ( )Lf θ , and rewrite the ex-ante incentive compatibility 

constraint as: 
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( ) ( ) ( )
1

1

( ) ( ( )) ( ) ( ( )) ( ) ( ( ))
C

C C

N k N

k k k k k k
kk k k k

C E T c q E T c q E T c q
−

== =

− + γ θ − θ ≥ γ θ − θ + γ θ − θ∑ ∑ ∑ , 

or: 

– C + ˆˆ HEγ (T(θ) – c(q(θ))) ≥ (1 – γ̂ ) ˆ
LE (T(θ) – c(q(θ))) + ˆˆ HEγ (T(θ) – c(q(θ))) , 

 

where ˆ
HE denote the expectation given ˆ ( )Hf θ  (and similarly for ˆ

LE ). It is possible to see that 

the condition above is similar to the ex ante
SIC −  constraint in the binary state case with the 

exception that now each distribution is the weighted average of all distributions in which the 

buyer uses and does not use the new product. The same argument holds for the supplier's ex-

ante individual rationality constraint and the buyer's expected profit. Therefore, constraint (9) 

and Lemma 1 also follows through (with the new definitions of ˆ
HE  and ˆ

LE ). This implies 

that for any given kC such that 1 < kC < N, the resulting quantity distortion is a function of the 

gap between the two weighted averages of the cumulative distribution functions: 

 
1

1

ˆ ˆ( ) ( ), ( ) ( ).
ˆ ˆ

C

C

N k
k k

H k L k
kk k

F F F F
−

==

γ γ
θ ≡ θ θ ≡ θ

γ γ∑ ∑  

 

The intuition comes from the restriction that the contract is the same for all states, and 

therefore it is possible to take both the supplier's and the buyer's payoff as common divisor. 

 

Remarks: 

• In the case of N > 2, the buyer can also endogenously choose kC. It is possible to solve 

the above maximization problem as a two-stage process. In the first stage, the buyer 

solves for the optimal menu given any kC. In the second stage, the buyer selects the 

optimal kC. The analysis above holds given 1 < kC < N, and therefore holds regardless 

of the kC that the buyer chooses. Notice that the buyer may choose a different kC than 

in the full information case, depending on the degree of the quantity distortion.   

• In the case of N > 2 states, there are also the supplier's ex-post incentive compatibility 

constraints to consider: Ek(T(θ) – c(q(θ))) ≤ 0 for ∀k∈{1,...,kC – 1} and Ek(T(θ) – 

c(q(θ))) ≥ 0 for ∀k∈{kC ,...,N}. In the binary case they never bind, but I cannot make 

the same argument for N > 2 without considering specific cases and using numerical 

simulations. At the same time, as (9) binds, quantity distortion is still going to be 

affected by the gap between the cumulative distribution functions. 
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• The analysis above will not follow to the case where the buyer can offer a menu that 

discriminates between states: (Tk(θ), qk(θ)), such that the supplier chooses a different 

menu depending on the actual k. In such a case, the buyer also needs to motivate the 

supplier to choose the menu that corresponds to the true state. This adds a new set of 

constraints that insure that the supplier will report the true state. Given the true state, 

k, and the supplier's report, k , the menu should ensure that:  

 

Ek(Tk(θ) – c(qk(θ))) ≥ Ek( ( ) ( ( )k kT c qθ − θ ),     ∀k, k ∈{kC ,...,N} . 

 

• These cosntraints may requier the buyer to pay the supplier ex-post information rents, 

which in turn may create another incentive for quantity distortion. As explained in the 

paper, I leave this point for future research.  
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Figure 1: The optimal mechanism under asymmetric information 
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Figure 2: The distribution functions given g(θ) (when fH(θ) is the 

uniform distribution)  
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Figure 3: The effect of α, β, μH, μL, σH
2 and σL

2 on the direction of the 

quantity distortion 

For μH = 1/2. The areas in the bold line satisfy the assumption EH(V(q*(θ);θ) – c(q*(θ))) 

> EL(V(q*(θ);θ) – c(q*(θ))).  
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