The Role of Coordination Bias in Platform Competition Online Appendix

Hanna Hałaburda*Yaron Yehezkel†Harvard Business SchoolTel-Aviv University

November 7, 2013

A Heterogeneous buyers: It is optimal for platform A to capture the non-loyal buyers

Suppose that $d_A = d_D = d$. Then, platform A's profit from serving the loyal buyers is: $\Pi^A_{loyal} = \hat{n}(dv - K) + d_A Q$. We first consider the case where Q = 0. To show that platform A makes higher profit than Π^A_{loyal} when serving the non-loyal buyers as well, we consider each combination of business models:

Both platforms attracting sellers. Substituting $X = (1 - \alpha)(1 - \gamma)(1 - d) + \gamma(1 - d)$ into $\Pi^{A}_{sellers-pay}$, platform A's profit when both platforms are attracting sellers is:

$$\Pi^{A}_{sellers-pay} = -\hat{n}K + v\hat{n} \left[2\alpha(1-d)(1-\gamma) + (1-d)\gamma - 1 + 2d \right].$$

Therefore,

$$\Pi^A_{sellers-pay} - \Pi^A_{loyal} = v\hat{n}(2\alpha - 1)(1 - d)(1 - \gamma) > 0,$$

where the inequality follows because $\alpha > 1/2$, 0 < d < 1/2 and $0 < \gamma < 1$.

Platform A attracts buyers and platform D attracts sellers. Substituting $X = (1 - \gamma)(1 - d) + \gamma d$ into $\prod_{sellers-pay}^{A}$, platform A's profit when platform A attracts buyers and platform D

^{*}Email: hhalaburda@gmail.com

[†]Email: yehezkel@post.tau.ac.il

attracts sellers is:

$$\Pi^A_{sellers-pay} = -\hat{n}K + v\hat{n} \left[\alpha (1-d)(1-\gamma) - 1 + 2d + 2\gamma - 3d\gamma \right].$$

Notice that $\Pi^{A}_{sellers-pay}$ is increasing with α . Therefore, $\Pi^{A}_{sellers-pay} > \Pi^{A}_{loyal}$ iff

$$\Pi^A_{sellers-pay} - \Pi^A_{loyal} = v\hat{n} \left[\alpha (1-d)(1-\gamma) + 2\gamma - 3d\gamma - 1 + d \right] > 0 \,,$$

or

$$\alpha > \frac{(1-\gamma)(1-d) - \gamma(1-2d)}{(1-\gamma)(1-d)}$$

Notice that the right-hand side is α_D . Since platforms A and D adopt sellers-pay and buyers-pay when $\alpha > \alpha_D$, $\Pi^A_{sellers-pay} > \Pi^A_{loyal}$ whenever both platforms adopt it.

Both platforms attract sellers. Substituting $X = (1 - \gamma)(1 - d) + \gamma d$ into $\Pi^A_{buyers-pay}$, platform A's profit when both platforms are attracting sellers is: $\Pi^A_{buyers-pay} = \hat{n}(dv - K) = \Pi^A_{loyal}$.

The effect of Q. Finally, notice that if Q > 0, $\Pi^A_{sellers-pay}$ and $\Pi^A_{buyers-pay}$ have the additional term of $Q(1 - d_D)$, while Π^A_{loyal} has the additional term of $d_A Q$. Since $1 - d_D > d_A$, it follows that the gap max{ $\Pi^A_{sellers-pay}, \Pi^A_{buyers-pay}$ } $- \Pi^A_{loyal}$ is increasing with Q. This implies that max{ $\Pi^A_{sellers-pay}, \Pi^A_{buyers-pay}$ } $> \Pi^A_{loyal}$ for all Q > 0. When platform A attracts buyers, max{ $\Pi^A_{sellers-pay}, \Pi^A_{buyers-pay}$ } $> \Pi^A_{loyal}$ even if Q < 0, as long as Q is not too low.